
International Conference on Computer Systems and Technologies - CompSysTech’15

Software Metrics in Students’ Software Development Projects

Pekka Mäkiaho, Timo Poranen Ari Seppi

Abstract: A software metric is the measurement of a particular characteristic of a software or the
measurement of a software project and process. In this paper we study how student project managers and
team members observe metrics, like working hours, number of test cases, requirement statuses, regular
reporting, and number of code commits, and which metrics they consider most important. The metrics that
the teams reacted most often were team’s working hours and requirements statuses. These metrics were
also considered the most useful by the project managers. We propose a method to calculate defect rate of
reporting metrics and combine this defect rate with the way the project teams used the metrics. It seems that
when the teams were motivated to use metrics, observed them and reacted on base of the metrics, they also
had less defects on reporting the metrics.

Key words: Software metrics, Project metrics, Student projects, Unit testing, Continuous integration,
Project management

INTRODUCTION
A software project can be called succeeded if it is completed on-time and on-budget

and all the requirements are fulfilled as specified [1,2,8,13]. The surveys made by Standish
Group [3] show that the projects very rarely fulfil these success criteria. Standish Group is
an organization that publishes a survey every two year in which it follows the success of
software projects mainly in US and European companies. The results show that during the
year 2012 only 39% of the projects succeeded. The project was assessed to be failed, if it
was terminated or if the software was never deployed. The failure rate of the studied
projects was 18%.

Project management consists of five phases: initiating, planning, executing,
monitoring plus controlling and closing [7]. One of the most important reason that a project
fails is poor reporting of the project’s status [10]. Because of the poor reporting, the
management does not know the state of the project and thus does not execute the right
actions. So it is failed on the monitoring and controlling phases.

In the next section software metrics are introduced with more details. Then data
gathering method is explained and after that the obtained data is analysed. The last
section concludes the work.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
CompSysTech'15, June 25-26, 2015, Dublin, Ireland
Copyright © 2015 ACM. ISBN 978-1-4503-3357-3/15/06...$15.00
http://dx.doi.org/10.1145/2812428.2812473

75

International Conference on Computer Systems and Technologies - CompSysTech’15

SOFTWARE METRICS
A software metric is the measurement of a particular characteristic of a software or the
measurement of a software project and process. Goodman [5] defines software metrics to
be “the continuous application of measurement-based techniques to the software
development process and its products to supply meaningful and timely management
information, together with the use of those techniques to improve that process and its
products".

Software metrics can be categorized into controlling and predicting metrics:
controlling metrics are related to software processes and predicting metrics to software
products [9]. An example of a controlling metric is the average time used for bug fixing,
and an example of predicting metric is the total number of lines of code. The controlling
metrics can also be divided into process and project metrics depending on whether they
are measuring the software process, and thus supporting strategic decisions, or whether
they are measuring an individual project and supporting tactical decisions [4]. In this paper
we use terms product metric, project metric and process metric.

DATA GATHERING

The data was collected from the courses Software Project Management (SPM) and Project
Work (PW) from the School of Information Sciences, University of Tampere during
academic year 2013-2014 [6]. The projects started in September and ended in March.

The PW course was a BSc level course and 46 students participated in that. On the
MSc level course, SPM, there were 41 students. In the courses, students formed project
groups of 6-8 members, so that the project managers came from the SPM course and the
developers from the PW course. Main learning goal of the courses is to give students an
experience on a managed and structured software development project with a real client.
Main outcome from the project is runnable software that fulfils client’s reasonable
requirements.

It should be emphasised that teams were relatively inexperienced. The managers
had experience at least from one student project where they acted as developers, and
most of the developers were participating in their first project.

The project groups had a mandatory set of deliverables with given deadlines. The
deliverables included software, documentation, weekly reports and six formal review
meetings with the course’s supervisor.

Weekly reports were sent to all stakeholders including course supervisors.
Supervisors updated a statistics page [12] in which the data was published. The next
statistics were shown on monthly bases: used hours, date of deliverables and reviews,
requirements with statuses, commits to the version control system, number of (unit) test
cases and the number of passed (unit) test cases.

The projects were given instructions to report the statuses of the requirements by
using six values: New (a requirement has been proposed), In progress (the group has
committed to implement the requirement), Resolved (implemented), Feedback (under
testing), Rejected (deleted) and Closed (requirement is implemented and it has been
tested that the implementation is correct). Some teams used Redmine or Jira project
management tools to maintain requirements statuses.

On top of these, the students filled three Moodle questionnaires with questions on
previous unit testing experience, usage of metrics in their projects and the challenges
faced on unit testing. The first questionnaire was filled in November when the

76

International Conference on Computer Systems and Technologies - CompSysTech’15

implementation was started, the second in the middle of the projects (January) and the last
in April when the projects should have been finished.

The course offered students access to an Ubuntu Linux continuous integration server
where Jenkins [14] and SonarQube [15] services had been set up. Jenkins is a widely
used Java based continuous integration server where build and test scripts (jobs) can be
launched automatically when changes occur in the version control system. The result of
the job is usually a build result and/or report of the test runs and metrics.

SonarQube is a platform for continuous code quality observing. It ties together
several tools allowing code quality analysis for multiple languages.

The workflow for creating the quality observation setup for a project began after the
group had something that could be built or analyzed. The members of the group could
then contact the server administrator who created accounts for Jenkins and SonarQube.
Using those accounts the groups could then configure the Jenkins job to analyze their
project with SonarQube.

SOFTWARE AND PROJECT METRICS IN STUDENT PROJECTS

An overview of projects is shown in Table 1. More detailed data can be found from
course’s statistics page [12]. In Table 1, it is given project number, duration in weeks, final
hours, final requirements statuses, number of code commits, number of the passed unit
test cases from all the unit test cases and number of the passed test cases from all the
test cases. The values on the Final requirements –column tells how many requirements
there were on each state (New, In progress, Resolved, Feedback, Closed, Rejected).

Table 1. Overview of projects.

 Duration Hours Final requirements Commits Passed unit test cases Passed test cases
1 26 weeks 820 3/0/0/2/14/1 104 1/1 10/12
2 26 weeks 1190 0/0/0/0/54/2 447 16/16 32/32
3 28 weeks 1247 0/4/12/0/2/8 378 2/2 5/5
4 26 weeks 1250 26/6/0/8/32/1 189 12/12 35/37
5 28 weeks 918 2/0/1/4/23/0 120 7/7 56/65
6 27 weeks 906 21/18/18/0/18/3 153 0/0 ?/?
7 25 weeks 953 0/0/0/0/51/36 89 14/14 16/16
8 26 weeks 1167 0/0/8/3/1/2 76 0/0 11/11
9 25 weeks 1000 4/13/2/0/0/0 153 0/0 0/10
10 28 weeks 932 0/0/0/29/3/15 195 0/0 9/37
11 30 weeks 1245 33/6/6/0/0/0 59 0/0 0/0
12 25 weeks 810 0/1/0/4/8/4 25 0/0 0/0
13 27 weeks 1049 0/0/17/0/0/6 139 0/0 0/0

FINDINGS FROM METRICS

The weekly reports were almost always sent on time, before Monday midnight.
During the course only one project was late with or skipped more than one weekly reports.
Three projects were late with a single report. The rest 9 projects sent the reports always
on time.

Looking at the monthly working hours [12], we have left out the September as the
projects started after the middle of September. Also the statistics from December and
January are not comparable as some of the project teams had a holiday between the
semesters. Leaving these (and one non-reported month from a project) out, the average
number of working hours was 163.9 hours per month. Maximum number of hours was 445

77

International Conference on Computer Systems and Technologies - CompSysTech’15

done by project 8 on February and the minimum monthly hours were 101 by project 6 at
November.

To see how the projects kept the schedule, we chose some of the deliverables from
the reporting: 5 reviews and the final test report. The preliminary analysis was to keep on
the 27th of September, 2013 with course supervisor and the client (optional); the project
plan review’s deadline was the 11th of October; three separate reviews with the client and
the supervisor were set to November, December and January. The test report was to
return by the 7th of March. It was not always easy to find a suitable time for the meetings
with the project group, client and course supervisor (having 12 other groups) with the
limited number of the meeting rooms. Thus we decided that if the meeting was held 10
days or less after the deadline it was considered to be held on time. On the average, the
projects were late with 3.7 out of the 6 chosen deliverables. It is not surprising that with the
1st delivery (Preliminary analysis) there were least delays (2/13) and with the last delivery
(Test report) there were most (10/13).

On average, the projects had 39 requirements during their life cycle (from 14 to 47).
One could assume that in the end of the project the status of a requirement is either closed
(average number of closed requirements was 16), rejected (average 6) or new (average 7)
if the implementation never started. However, on the final state of the projects, there were
other statuses reported too: in progress (average 4), resolved (average 5) and feedback
(average 4). In the students’ projects it may have been a known decision to publish some
requirements without testing and thus the statuses were left to be resolved. However, after
the project has been delivered, the status should never be in progress or feedback
(testing). When either of these two statuses existed, it was considered an error in
reporting.

The number of all test cases in a project varied between 0 and 65 and the number
of the unit test cases between 0 and 16. Only 7 groups out of the 13 reported reasonable
values every month. The number of reported commits to the version control system in the
final product varied between 76 and 447. Two groups skipped the reporting of commits
during 2 months or more.

Only two groups made unit tests to be run on Jenkins. This is explained by the
project groups often having little or no experience in unit testing or metrics analysis. This
was emphasized in groups who worked on languages other than PHP, for which the
course material provided ready examples. But even the PHP groups had problem if they
used a framework that required some additional setup to work with unit tests, for example.

Of the two groups who had unit tests run on Jenkins, the first got test coverage of
20.5%, the other only 2.5%. But low percentage of the latter is partially explained by their
project being a continuation from earlier project that did not have unit tests at all.

In project 10 neither the developers nor the project managers did have any previous
experience about unit testing. They however were one of few groups that actually used
metrics, one of the project managers observed SonarQube reports and took action when
needed. The project group did still have the common problem that when nobody is very
experienced the basic functionality requires so much work that the quality related issues
are often ignored just to get something done.

In the current setting only three of the 13 groups had more than 20 SonarQube runs
which can be considered as some kind of minimum for any kind of metrics usage.

Not that surprising result was that the groups (projects 2, 4, 7 and 10) that had
specific plans about metrics usage, also had the most Sonar runs and unit tests.

One of the problems for the metrics generation were diversive project platforms. PHP
applications were supported the best, some groups tried Android analysis, but
encountered problems. C# analysing was not available because it would have needed
Windows server to be properly configured [11].

78

International Conference on Computer Systems and Technologies - CompSysTech’15

 FINDINGS FROM MOODLE QUESTIONNAIRES
In the Moodle questionnaires, it was asked if the members saw the metrics important,

which metrics were observed, and which were considered as the most important ones. On
top of these, project managers were asked, if they used the metrics for making decisions,
i.e. whether they reacted on the basis of metrics and if they had a formal process to
observe metrics.

The questionnaires provided interesting viewpoint to what metrics the project groups
really observed and what metrics the project members saw the most important. These are
shown in Table 2.

Table 2. Metrics observed and seen most important.
Metric Observed by number of groups Reported to be most useful
Working hours 12 7
Requirements/User stories 11 8
Commits/Code revisions 6 2
Code warnings (from Sonar) 6 1
Test cases 3 1
Lines of code 3 1
Number of bugs 2 0
Code coverage 2 0
Function points 1 1
Rules compliance index 1 1

Almost all groups observed working hours (12 groups), after that the most observed

metrics were requirements (11) and the number of commits (6). Product metrics were not
so well observed; violations were observed by 6 groups, unit test count were observed by
3 groups.

For the managers the working hours were clearly the most used metrics as they were
the most important for passing the course and easiest to react (informing the course
personnel with lacking hours that they need to do more hours). The second most reacted
metrics were the requirements as the end deliverable also strongly affected the grade. As
for the product metrics some groups reacted on them, but mostly they were not used. One
comment was that the group reacted to the issues that caused changes in product metrics
not to the changes in metrics themselves.

The unit testing material provided unit testing examples with PHP only so groups
using other languages had difficulties in implementing the tests as most of the course
participants had little coding experience. Even for the groups using PHP creating unit test
cases for different frameworks not used in the examples posed a considerable challenge.

On Jenkins server some groups faced the obstacle that their project language was
not supported, this was the case with C# projects. Even if the language itself was
supported the frameworks created additional difficulty as not all the frameworks were
supported on the Jenkins server when the course began and getting them to work required
some debugging from the group.

79

International Conference on Computer Systems and Technologies - CompSysTech’15

DEFECT RATE AND METRICS USAGE
In Table 3, we have compared how the project teams themselves used metrics and

how well they reported. Defects on reporting here is a sum of different factors multiplied by
a number which tells how important we saw this factor on the course. The first factor of
defect was if the weekly reports were sent on time. If all reports were on time, the value of
Delivery of reports is 0; if 1-2 reports were late, the value is 1; value 2 is given if 3 or more
reports were late or missing; multiplier is 1.

Table 3. Groups, reporting and own metrics usage.
Project#
/Multipli
er

1 4 3 1

0.1 1 1 2

Factor
(values) Deliver

y of
reports
(0, 1)

Requirements
(0,1,2,3)

Test
cases
(0, 1, 2)

Commits
Defects
on
reporting

Number of
metrics
observed

Metrics
considere
d
important
(-1, 0, 1)

Rea
ctio
n to
metr
ics(
0,1)

Formal
proces
s(0,1,2
)

Metrics
usage

1 0 1 0 0 4 2 1 0 0 1.2

2 0 1 0 0 4 5 0 1 1 3.5

3 0 2 0 0 8 5 0 1 1 3.5

4 0 3 0 0 12 5 1 0 1 3.5

5 0 1 0 0 4 3 -1 0 1 1.3

6 0 3 2 0 18 2 0 0 0 0.2

7 1 1 0 0 5 7 0 1 2 5.7

8 0 2 2 0 14 5 0 1 2 5.5

9 0 3 1 0 15 4 1 1 2 6.4

10 0 3 1 0 15 9 -1 1 1 2.9

11 2 3 2 1 21 4 -1 0 0 -0.6

12 1 3 0 1 14 2 0 1 0 1.2

13 0 2 1 0 11 4 1 1 1 4.4

Requirements has value 0 if the requirements were reported monthly and the total

amount of the requirements was consistent (not decreasing) and at the end of a project
there were no requirements in wrong states (feedback or progress). Value 1 is given if
there were no inconsistencies in the total number and 1-10% of the requirements were in
wrong state or if there were inconsistencies during one month but at the end of the
projects all statuses were correct. Value 2 is given if there were inconsistencies on the
total amount and 1- 10% of the states were wrong. Value 3 is given in all the other cases.
The multiplier of the requirements-factor is 4.

Test cases gets value 0 if unit test cases and the other test cases were reported
monthly and the values were reasonable; 1 is given, if the values were missing less than
from 2 months or the values were not reasonable; number 2 is given in all the other cases.
Multiplier for test cases is 3.

Commits-factor gets value zero if all the values were reasonable and the numbers are
missing maximum from one month; value 1 is given in all the other cases. The multiplier
for commits-factor is 1.

Metrics usage is also a sum of different factors with given weights. The weights were
given on the base of our own knowledge and experience on project management.
Number of metrics observed is the number of the metrics the group observed. It is given
multiplier 0.1. Metrics considered important gest a value -1 if the project members

80

International Conference on Computer Systems and Technologies - CompSysTech’15

answered that they did not see metrics important, 1 is given if the metrics was seen
important and the value 0 if the answers were contradictory or missing. Multiplier for the
metrics considered important is 1.

Reaction to metrics gets a value 1 if the project reported that they had actions on the
project on the basis of the metrics; otherwise, the value is zero. Multiplier of the reaction to
metrics is 1.

Formal process -factor gets a value 1, if the metrics were observed systematically but
no formal process was planned; value 2 is given, if there were a formal process and it was
followed; otherwise the value is zero. Multiplier for the formal process -factor is 1.

In Figure 1, each project is put on the diagram so that the value of defects sets the
place on the y-axis and the value of the x-axis is got from the metrics usage -value.

Figure 1. Defects on reporting (x-axis) vs Own metrics usage (y-axis).

There were 4 projects which had the defect-value 5 or less; one of those had also the

second highest own metrics usage. Actually this project was selected the best project of
the year. There were two projects which had very little own metrics usage (value less than
one). These projects had also the highest values on defects, and they had problems to
deliver the project.

It would be interesting to research further, if there is a dependency between the
reporting of metrics and the metrics own usage in the project. All the projects seemed not
to follow this pattern: there were two projects which reported conscientiously even if they
did not use metrics themselves. These ‘rule follower’ projects got grades from 4 to 5. Two
projects also had a high own usage and more than average value on defects (projects 8
and 9). The grade of these projects were 4.

CONCLUSIONS AND FUTURE WORK
As far as Jenkins server and metrics generation are concerned, the students had lots of
difficulties setting up their projects so in the future some kind of automatic metrics
generation setup with unit test templates could be considered.

It seems that there is a relation between how much the projects used the metrics
themselves and how well they reported the metrics. As the poor reporting is one of the
reasons why the projects fail [1], it could be worth of researching further whether the
reporting level could be increased by teaching the project groups how they could better
utilise the metrics generating tools and also take advantage of observing metrics.

81

International Conference on Computer Systems and Technologies - CompSysTech’15

REFERENCES
[1] Attarzadeh, I. and Ow, S.H. Project Management Practices: The Criteria for

Success or Failure. Communications of the IBIMA, 1. Pages 234-241. 2008.
[2] Blaney, J. Managing software development projects, PMI Seminar/Symposium

(Oct 7–11, 1989). Pages 410–417.
[3] The Standish group, CHAOS Manifesto 2013. The Standish Group International,

2013.
[4] Fenton, N. Software Metrics - A Rigorous Approach. Chapmann & Hall, London,

1991.
[5] Goodman, P. Practical Implementation of Software Metrics, McGraw Hill, London,

1993.
[6] Mäkiaho, P. and Poranen, T. (editors) Software Projects 2013-2014. University of

Tampere, School of Information Sciences, Report 27 (2014).
[7] A Guide to the Project Management Body of Knowledge, 5th edition. Project

Management Institute, 2013.
[8] Rook, P. Controlling software development projects. Software Engineering Journal

- Controlling software projects archive. 1 (1), Jan. 1986. Pages 7-16.
[9] Sommerville, I. Software Engineering, 9th edition. Addison-Wesley, 2010.
[10] Why Software Fails. http://spectrum.ieee.org/computing/software/why-software-

fails. Referred 31.3.2015
[11] SonarQube, C#-plugin. http://docs.sonarqube.org/display/SONAR/C%23+Plugin.

Referred 31.3.2015.
[12] SIS-Projectwiki, statistics page 2013-2014. http://www.sis.uta.fi/~tp54752/project-

statistics.
[13] Weitz, L. How to implement projects successfully, Software Magazine, 9 (13),

1989. Pages 60–69.
[14] Jenkins CI, https://jenkins-ci.org/. Referred 31.3.2015.
[15] SonarQube, http://www.sonarqube.org/. Referred 31.3.2015.

ABOUT THE AUTHORS
 PhD student Pekka Mäkiaho MSc, School of Information Sciences, University of
Tampere, Finland, E-mail: pekka.makiaho@uta.fi.
………………………………………………………………………
University lecturer Timo Poranen, PhD, School of Information Sciences, University of
Tampere, Finland, E-mail: timo.t.poranen@uta.fi.

………………………………………………………………………
PhD student Ari Seppi, MSc, School of Information Sciences, University of Tampere,
Finland, E-mail: ari.seppi@gmail.com

82

